Предмет статистики, основные термины и функции статистики. Природа статистических данных
Статистика является мультидисциплиной, так как она использует методы и принципы, заимствованные из других дисциплин. Так, в качестве теоретической базы для формирования статистической науки служат знания в области социологии и экономической теории. В рамках этих дисциплин происходит изучение законов общественных явлений. Статистика помогает произвести оценку масштаба того или иного явления, а также разработать систему методов для анализа и изучения. Статистика, несомненно, связана с математикой, так как для выявления закономерностей, оценки и анализа объекта исследования требуется ряд математических операций, методов и законов, а систематизация результатов находит отражения в виде графиков и таблиц.
Виды статистических исследований
Наблюдение как начальный этап исследования связано со сбором исходных данных об изучаемом вопросе. Оно свойственно многим наукам. Однако каждая наука имеет свою специфику, отличаясь по своим наблюдениям. Поэтому не всякое наблюдение — статистическое.
Статистическое исследование — это научно организованный по единой программе сбор, сводка и анализ данных (фактов) о социально-экономических, демографических и других явлениях и процессах общественной жизни в государстве с регистрацией их наиболее существенных признаков в учетной документации.
Отличительными чертами (спецификой) статистического исследования являются: целенаправленность, организованность, массовость, системность (комплексность), сопоставимость, документированность, контролируемость, практичность.
В целом статистическое исследование должно:
Иметь общественно-полезную цель и всеобщую (государственную) значимость;
Относиться к предмету статистики в конкретных условиях его места и времени;
Выражать статистический вид учета (а не бухгалтерский и не оперативный);
Проводиться по заранее разработанной программе с ее научно обоснованным методологическим и другим обеспечением;
Осуществлять сбор массовых данных (фактов), в которых отражается вся совокупность причинно-следственных и других факторов, разносторонне характеризующих явление;
Регистрироваться в виде учетных документов установленного образца;
Гарантировать отсутствие ошибок наблюдения или же сводить их к возможному минимуму;
Предусматривать определенные критерии качества и способы контроля собранных данных, обеспечивая их достоверность, полноту и содержательность;
Ориентироваться на экономически эффективную технологию сбора и обработки данных;
Быть надежной информационной базой для всех последующих этапов статистического исследования и всех пользователей статистической информацией.
Исследования, не удовлетворяющие этим требованиям, статистическими не являются. Не являются статистическими исследования, например, наблюдения и исследования: матери за играющим ребенком (личный вопрос); зрителей за театральной постановкой (нет учетной документации по зрелищу); научного работника за физико-химическими опытами с их измерениями, расчетами и документальной регистрацией (не массово-общественные данные); врача за больными с ведением медицинских карточек (оперативный учет); бухгалтера за движением денежных средств на банковском счете предприятия (бухгалтерский учет); журналистов за общественной и личной жизнедеятельностью государственных лиц или иных знаменитостей (не предмет статистики).
Статистическая совокупность — множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.
Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом статистического исследования.
Статистическое наблюдение является первой стадией статистического исследования, представляющий собой научно организованный сбор данных об изучаемых явлениях и процессах общественной жизни.
Статистические методы
Статисти́ческие ме́тоды
— методы анализа статистических данных. Выделяют методы прикладной статистики , которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.
|
Классификация статистических методов
Статистические методы анализа данных применяются практически во всех областях деятельности человека.
Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.
Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):
а) разработка и исследование методов общего назначения, без учета специфики области применения;
б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;
в) применение статистических методов и моделей для статистического анализа конкретных данных.
Прикладная статистика
Описание вида данных и механизма их порождения — начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.
Мы не считаем возможным противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.
В простейшей ситуации статистические данные — это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.
При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат — числа, а часть — качественные (категоризованные) данные, то говорим о векторе разнотипных данных.
Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, — электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.
Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы — образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т. д.
Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных — числовые и нечисловые. Соответственно прикладная статистика разбивается на две части — числовую статистику и нечисловую статистику.
Числовые статистические данные — это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки — это (классические) законы больших чисел и центральные предельные теоремы.
Нечисловые статистические данные — это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т. д. (см. ).
В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т. н. цензурированные данные, состоящие из набора чисел — продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.
Обычно отдельно рассматривают статистические методы анализа данных первых трех типов. Это ограничение вызвано тем отмеченным выше обстоятельством, что математический аппарат для анализа данных нечисловой природы — существенно иной, чем для данных в виде чисел, векторов и функций.
Вероятностно-статистическое моделирование
При применении статистических методов в конкретных областях знаний и отраслях народного хозяйства получаем научно-практические дисциплины типа «статистические методы в промышленности», «статистические методы в медицине» и др. С этой точки зрения эконометрика — это «статистические методы в экономике». Эти дисциплины группы б) обычно опираются на вероятностно-статистические модели, построенные в соответствии с особенностями области применения. Весьма поучительно сопоставить вероятностно-статистические модели, применяемые в различных областях, обнаружить их близость и вместе с тем констатировать некоторые различия. Так, видна близость постановок задач и применяемых для их решения статистических методов в таких областях, как научные медицинские исследования, конкретные социологические исследования и маркетинговые исследования, или, короче, в медицине , социологии и маркетинге . Они часто объединяются вместе под названием «выборочные исследования».
Отличие выборочных исследований от экспертных проявляется, прежде всего, в числе обследованных объектов или субъектов — в выборочных исследованиях речь обычно идет о сотнях, а в экспертных — о десятках. Зато технологии экспертных исследований гораздо изощреннее. Еще более выражена специфика в демографических или логистических моделях, при обработке нарративной (текстовой, летописной) информации или при изучении взаимовлияния факторов.
Вопросы надежности и безопасности технических устройств и технологий, теории массового обслуживания подробно рассмотрены, в большом количестве научных работ.
Статистический анализ конкретных данных
Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.
Например, результаты опроса потребителей растворимого кофе естественно отнести к маркетингу (что и делают, читая лекции по маркетинговым исследованиям). Исследование динамики роста цен с помощью индексов инфляции, рассчитанных по независимо собранной информации, представляет интерес прежде всего с точки зрения экономики и управления народным хозяйством (как на макроуровне, так и на уровне отдельных организаций).
Перспективы развития
Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая — как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.
Актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.
Литература
2. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. — М.: Мир, 1975. — 500 с.
3. Крамер Г. Математические методы статистики. — М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). — 648 с.
4. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. — М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).
5. Смирнов Н. В., Дунин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений. Изд. 3-е, стереотипное. — М.: Наука, 1969. — 512 с.
6. Норман Дрейпер, Гарри Смит
Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика» , 2007. — С. 912. — ISBN 0-471-17082-8
Смотри также
Wikimedia Foundation
.
2010
.
- Yat-Kha
- Амальгама (значения)
Смотреть что такое «Статистические методы» в других словарях:
СТАТИСТИЧЕСКИЕ МЕТОДЫ
— СТАТИСТИЧЕСКИЕ МЕТОДЫ научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово “статистика” (от игал. stato государство) имеет общий корень со словом “государство”. Первоначально оно… … Философская энциклопедия
СТАТИСТИЧЕСКИЕ МЕТОДЫ –
— научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово «статистика» (от итал. stato – государство) имеет общий корень со словом «государство». Первоначально оно относилось к науке управления и … Философская энциклопедия
Статистические методы
— (в экологии и биоценологии) методы вариационной статистики, позволяющие исследовать целое (напр., фитоценоз, популяцию, продуктивность) по его частным совокупностям (напр., по данным, полученным на учетных площадках) и оценить степень точности… … Экологический словарь
статистические методы
— (в психологии) (от лат. status состояние) нек рые методы прикладной математической статистики, используемые в психологии в основном для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Большая психологическая энциклопедия
Статистические методы
— 20.2. Статистические методы Конкретные статистические методы, используемые для организации, регулирования и проверки деятельности, включают, но не ограничиваются следующими: а) планированием экспериментов и факторный анализ; b) анализ дисперсии и … Словарь-справочник терминов нормативно-технической документации
СТАТИСТИЧЕСКИЕ МЕТОДЫ
— методы исследования количеств. стороны массовых обществ. явлений и процессов. С. м. дают возможность в цифровом выражении характеризовать происходящие изменения в обществ. процессах, изучать разл. формы социально экономич. закономерностей, смену… … Сельско-хозяйственный энциклопедический словарь
СТАТИСТИЧЕСКИЕ МЕТОДЫ
— некоторые методы прикладной математической статистики, используемые для обработки экспериментальных результатов. Ряд статистических методов был разработан специально для проверки качества психологических тестов, для применения в профессиональном… … Профессиональное образование. Словарь
СТАТИСТИЧЕСКИЕ МЕТОДЫ
— (в инженерной психологии) (от лат. status состояние) некоторые методы прикладной статистики, используемые в инженерной психологии для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Энциклопедический словарь по психологии и педагогике
Поэтому обычно статистическая таблица определяется как форма компактного наглядного представления статистических данных.
Анализ таблиц позволяет решать многие задачи при изучении изменения явлений во времени, структуры явлений и их взаимосвязей. Таким образом, статистические таблицы выполняют роль универсального средства рационального представления, обобщения и анализа статистической информации.
Внешне статистическая таблица
представляет собой систему построенных особым образом горизонтальных строк и вертикальных столбцов, имеющих общий заголовок, заглавия граф и строк, на пересечении которых и записываются статистические данные.
Каждая цифра в статистических таблицах — это конкретный показатель, характеризующий размеры или уровни, динамику, структуру или взаимосвязи явлений в конкретных условиях места и времени, то есть определенная количественно-качественная характеристика изучаемого явления.
Если таблица не заполнена цифрами, то есть имеет только общий заголовок, заглавия граф и строк, то мы имеем макет статистической таблицы. Именно с его разработки и начинается процесс составления статистических таблиц.
Основными элементами статистической таблицы являются подлежащее и сказуемое таблицы
.
Подлежащее таблицы
— это объект статистического изучения, то есть отдельные единицы совокупности, их группы или вся совокупность в целом.Сказуемое таблицы
— это статистические показатели, характеризующие изучаемый объект.
Подлежащее и показатели сказуемого таблицы должны быть определены очень точно. Как правило подлежащее распологается в левой части таблицы и составляет содержание строк, а сказуемое — в правой части таблицы и составляет содержание граф.
Обычно при расположении показателей сказуемого в таблице придерживаются следующего правила: сначала приводят абсолютные показатели, характеризующие объем изучаемой совокупности, затем — расчетные относительные показатели, отражающие структуру, динамику и взаимосвязи между показателями.
Построение аналитических таблиц
Построение аналитических таблиц таково. Любая таблица
состоит из подлежащего и сказуемого. Подлежащее раскрывает экономическое явление, о котором идет речь в данной таблице и содержит набор показателей, отображающих это явление. Сказуемое таблицы поясняет, какие именно признаки отображают подлежащее.
Некоторые таблицы отражают изменения структуры каких-либо . В таких таблицах помещается информация о составе анализируемого экономического явления как в базисном, так и в отчетном периоде. По этим данным определяется доля (удельный вес) каждой части в общей совокупности и рассчитываются отклонения от базисных удельных весов по каждой части.
Отдельные таблицы могут отражать взаимосвязь между экономическими показателями по каким-либо признакам. В подобных таблицах информация по данному экономическому показателю располагается в порядке возрастания или убывания числовых величин, характеризующих этот показатель.
В экономическом анализе составляются также таблицы, отражающие результаты определения влияния отдельных факторов на величину анализируемого обобщающего (результативного) показателя. При оформлении подобных таблиц вначале помещают информацию о факторах, влияющих на обобщающий показатель, затем информацию о самом обобщающем показателе и наконец об изменении этого показателя в совокупности, а также за счет воздействия каждого анализируемого фактора. Отдельные аналитические таблицы отражают результаты подсчета резервов улучшения экономических показателей, выявленные в результате проведенного анализа. В таких таблицах показывается как фактический, так и теоретически возможный размер влияния отдельных факторов, а также возможная величина резерва роста обобщающего показателя за счет влияния каждого отдельного фактора.
Наконец, в анализе хозяйственной деятельности составляются также таблицы, которые предназначены для обобщения результатов проведенного анализа.
Практикой статистики разработаны следующие правила составления таблиц:
- Таблица должна быть выразительной и компактной. Поэтому вместо одной громозкой таблицы по множеству признаков лучше сделать несколько небольших по объему, но наглядных, отвечающих задаче исследования таблиц.
- Название таблицы, заглавия граф и строк следует формулировать точно и лаконично.
- В таблице обязательно должны быть указаны: изучаемый объект, территория, и время к которым относятся приводимые в таблице данные, единицы измерения.
- Если какие-то данные отсутствуют, то в таблице либо ставят многоточие, либо пишут «нет сведений», если какое-то явление не имело места, то ставят тире
- Значения одних и тех же показателей приводятся в таблице с одинаковой степенью точности.
- Таблица должна иметь итоги по группам, подгруппам и в целом. Если суммирование данных невозможно, то в этой графе ставят знак умножения «*».
- В больших таблицах после каждых пяти строк деляют промежуток, чтобы было удобнее читать и анализировать таблицу.
Виды статистических таблиц
Среди методов наиболее распространен табличный метод (способ) отображения исследуемых цифровых данных. Дело в том, что как исходные данные для проведения анализа, так и различные расчеты, а также результаты проведенного исследования оформляются в виде аналитических таблиц. Таблицы представляют собой весьма целесообразную и наглядную форму отображения числовой информации, используемой в . В аналитических таблицах в определенном порядке располагается цифровая информация об изучаемых экономических явлениях. Табличный материал гораздо более информативен и нагляден по сравнению с текстовым изложением материала. Таблицы позволяют представить аналитические материалы в виде единой целостной системы.
Вид статистической таблицы определятеся характером разработки показателей ее полежащего.
Различают три вида статистических таблиц:
- простые
- групповые
- комбинационные
Простые таблицы
содержат перечень отдельных единиц, входящих в состав совокупности анализируемого экономического явления. В групповых таблицах
цифровая информация в разрезе отдельных составных частей исследуемой совокупности данных объединяется в определенные группы в соответствии с каким-либо признаком. Комбинированные таблицы
содержат отдельные группы и подгруппы, на которые подразделяются , характеризующие изучаемое экономическое явление. При этом такое подразделение осуществляется не по одному, а по нескольким признакам. в групповых таблицах осуществляется простая группировка показателей, а в комбинированных — комбинированная группировка. Простые таблицы вообще не содержат никакой группировки показателей. Последний вид таблиц содержит лишь несгруппированный набор сведений об анализируемом экономическом явлении.
Простые таблицы
Простые таблицы имеют в подлежащем перечень единиц совокупности, времени или территорий.
Групповые таблицы
Групповыми называются таблицы, имеющие в подлежащем группировку единиц совокупности по одному признаку.
Комбинационные таблицы
Комбинационные таблицы имеют в подлежащем группировку единиц совокупности по двум или более признакам.
По характеру разработки показателей сказуемого различают:
- таблицы с простой разработкой показателей сказуемого, в которых имеет место параллельное расположение показателей сказуемого.
- таблицы со сложной разработкой показателей сказуемого, в которых имеет место комбинирование показателей сказуемого: внутри групп, образованных по одному признаку, выделяют подгруппы по другому признаку.
Таблица с простой разработкой показателей сказуемого
В сказуемом этой таблицы приводятся данные сначала о распределении студентов по полу, а затем — по возрасту, т.е. имеют место изолированные характеристики по двум признакам.
Таблица со сложной разработкой показателей сказуемого
Отделения |
Численность студентов, чел. |
В том числе |
|||||||
из них в возрасте, лет |
из них в возрасте, лет |
||||||||
23 и более |
23 и более |
||||||||
Вечернее |
|||||||||
Сказуемое этой таблицы не только характеризует распределение студентов по каждому из двух выделенных признаков, но и позволяет изучить состав каждой группы, выделенной по одному признаку — полу, по другому признаку — возрасту студентво, т.е. имеет место комбинирование двух признаков.
Следовательно, таблицы со сложной разработкой показателей сказуемого обеспечивают более широкие возможности для анализа изучаемых показателей и взаимосвязей между ними. Простую и сложную разработку показателей сказуемого может иметь таблица любого вида: простая, групповая, комбинационная.
В зависимости от этапа статистического исследования таблицы делятся на:
- разработочные
(вспомогательные), цель которых обобщить информацию по отдельным единицам совокупности для получения итоговых показателей. - сводные
, задача которых показать итоги по группам и всей совокупности в целом. - аналитические
таблицы, задача которых — расчет обобщающих характеристик и подготовка информационной базы для анализа и структуры и структурыных сдвигов, динамики изучаемых явлений и взяимосвязей между показателями.
Итак, мы рассмотрели табличный метод отображения исследуемых цифровых данных, широко используемый в ходе проведения анализа экономических явлений, статистических данных и хозяйственной деятельности организаций.
Группировки в уголовно — правовой статистике позволяют дать наиболее полную и всестороннюю криминологическую и уголовно-правовую характеристику по самым разнообразным признакам:
- Ш по видам — статьям УК,
- Ш по объекту посягательства,
- Ш по территориальному признаку — район, область, край, республика,
- Ш соотношение корыстных и насильственных преступлений,
- Ш по времени совершения преступлений и т.д.),
- Ш личности преступников (по полу, возрасту, образованию, социальному положению, месту жительства и т.д.),
- Ш причин и условий, способствующих совершению преступлений, а также мер социально-правового контроля над ними .
При этом очень важно различные группировки из уголовно-правовой статистики сопоставлять не только друг с другом, но и с группировками из иных отраслей статистики (демографической, социально-экономической и др.), отражающих взаимосвязанные явления.
Различия в целевом назначении группировки, задачах, которые они решают в статистическом анализе, выражаются в существующей их классификации: типологические, структурные, аналитические.
Важнейшая задача группировок в статистике заключается в том, чтобы изучаемую массу единиц совокупности подразделить на характерные типы, т.е. на группы, однородные по существенным признакам. Эта задача решается с помощью типологической группировки.
Типологические группировки
— это разграничение изучаемой совокупности на однородные группы, типы по существенному качественному признаку.
Основная цель типологической группировки — отграничение одного типа явлений от другого статистическими средствами. Этот вид группировок в значительной степени определяется сложившимися представлениями о том, какие типы явлений составляют содержание изучаемой совокупности.
В правовой статистике это три типа правоотношений: уголовно-правовые, административно-правовые и гражданско-правовые, которыми и определяются ее разделы.
В уголовно — правовой статистике, в частности, это может быть, например, распределение по полу лиц, совершивших преступления .
Данная группировка по качественному признаку, когда имеются всего лишь два значения этого признака, причем одно из них исключает другое, в статистке именуется альтернативной.
Последовательность действий проведения этого типа группировки элементарна:
- 1) определяется тип явления, которое должно быть выделено — в нашем случае зарегистрированные преступления;
- 2) выбирается группировочный признак как основание описания типа — в нашем случае пол лиц, совершивших преступления;
- 3) устанавливаются границы интервалов (в нашем случае по всем лицам, выявленным в совершении преступлений);
- 4) группировка оформляется в таблицу, выделенные группы (на основе комбинации группировочных признаков) объединяются в намеченные типы и определяется численность (удельный вес) каждого из них .
При типологической группировке, то есть при подытоживании единиц в качественно-однородные категории, эти категории должны, как отмечалось, определяться на основании положений соответствующей науки и норм закона. Например, группировка наказаний по видам осуществляется уголовно — правовой (судебной) статистикой в полном соответствии со ст. 43-59 УК, устанавливающих с исчерпывающей полнотой точные качественные признаки их отдельных видов (штраф, исправительные работы, лишение свободы и т.д.
Структурные группировки
— это распределение типически однородных групп по количественным признакам, которые могут изменяться (варьировать). В научной литературе этот вид группировок иногда называют вариационным. С их помощью в уголовно-правовой статистике изучают, например, структуру преступников по варьирующему признаку: по возрасту, числу судимостей, по срокам лишения свободы, размерам заработной платы и другим количественным признакам.
Структурная, или вариационная, группировка статистических данных может производиться, чтобы изучить изменение структуры типически однородных групп преступлений, правонарушителей, гражданских исков и других показателей. Для структурной группировки материала необходимо наличие однородных совокупностей, расчленяемых по величине изменяющегося (варьирующего) признака.
Если в основе типологической группировки лежат качественные признаки, то в основу вариационной положены количественные (удельные веса преступлений, лиц, дел, возраст правонарушителей, сроки наказания, число судимостей, число оконченных классов, суммы ущерба, суммы иска, сроки расследования и рассмотрения уголовных или гражданских дел и т.д.) .
Количественные сдвиги в структуре изучаемых явлений за несколько лет свидетельствуют об изменении объективных тенденций и закономерностей, следственной или судебной практики, о результативности деятельности правоохранительных или других юридических органов. Взяв, например, абсолютные и относительные показатели судимости за много лет, мы выявим тенденции в судебной практике и ее связь с реальной преступностью. Изучив динамику абсолютных чисел учтенных преступлений какого-то вида, динамику его удельного веса в структуре всей преступности, мы обнаружим тенденции развития этого деяния.
Структурные группировки могут быть построены на основе долевого распределения преступлений по сферам и объектам преступного посягательства, субъектам Федерации, регионам и территориям
Структурные различия в этом случае могут раскрывать особенности криминологической обстановки в том или ином регионе.
К структурным (вариационным) группировкам примыкают ряды распределения единиц совокупности по варьирующим признакам.
Аналитические группировки
— это распределение по зависимости, взаимосвязи между двумя или несколькими разнородными группами явлений или их признаками (например, распределение краж по месту и времени их совершения; осужденных за автотранспортные преступления — по стажу работы водителя и т.д.).
Аналитические группировки имеют большое значение для всех отраслей юридической статистики. Они дают возможность выявить многие скрытые зависимости и взаимосвязи, что имеет важное значение для принятия практических решений и развития юридической науки. Аналитический потенциал есть и у других видов группировок, а также иных статистических приемах, но собственно аналитическая группировка прямо преследует установление зависимостей между исследуемыми явлениями . По характеру своих задач к аналитической группировке близко стоят группировки корреляционные, когда зависимость между исследуемыми явлениями или процессами может быть относительно точно измерена.
Все виды рассмотренных группировок при анализе социально-правовых, деликтологических и криминологических аспектов, как правило, применяются вместе. Например, для установления общественной опасности и тяжести совершаемых преступлений мы можем расчленить их совокупность по категориям деяний и формам вины (типологическая группировка). Для определения результативности борьбы с преступностью различных правоохранительных органов (внутренних дел, наркоконтроля, таможенной службы, прокуратуры, службы безопасности) мы можем исследовать варьирование раскрываемости преступлений в упомянутых ведомствах (вариационная группировка).
Для того чтобы установить причины и условия роста или (снижения преступности в городе, регионе, стране) следует применить целый ряд аналитических группировок.
Понятие «статистика» происходит от латинского слова «status», которое в переводе означает — положение, состояние, порядок явлений.
Развитие политической арифметики (Англия) и государствоведения
(Германия) привело к появлению науки статистики.
В научный оборот термин «статистика» введен математиками Геттингенского универ-ситета в 18 веке.(Готфрид Ахенваль (1719-1772)).
В настоящее время существует около 150 определений статистики как научной дисциплины. Одно из лучших определений статистики дал австрийский математик Абрахам Вальд: « Статистика — это совокупность методов, которые дают нам возможность принимать оптимальные решения в условиях неопределенности».
Из различных определений статистики для практической медицины наиболее применимо следующее:
«Статистика
— это наука о сборе, классификации и количественной оценке данных с целью получения достоверных выводов, прогнозов и решений».
Статистика
изучает случайные массовые явления. Массовые явления
— это явления, которые встречаются в больших количествах, но отличаются друг от друга величиной определенного признака. Чем больше количество объектов взято для исследования, тем достовернее статистические выводы.
Статистика состоит из теоретической (общей) статистики и прикладной
(экономической, социальной, отраслевой) статистики.
К отраслевым статистикам относится метеорологическая (статистика прогноза погоды), транспортная, экономическая, биологическая, медицинская.
Теоретическую статистику делят на описательную
(дескриптивную) и аналитическую (индуктивную).
Описательная статистика
— это статистика сбора общих данных. Она представляет собой совокупность методов сбора, группировки, классификации исходных данных и представлении их в удобном, для последующей обработки, виде (таблицы, графики).
Аналитическая статистика
— это статистика выводов и прогнозов на основе математической обработки результатов, предоставленных описательной статистикой. Она включает в себя методы получения различных статистических заключений и выводов с целью их практического применения.
Медицинская статистика
— это отраслевая статистика, комплекс методов прикладной статистики, которые применяются в научной, практической медицине и здравоохранении.
Основные задачи медицинской статистики:
ü статистика рождаемости и смертности;
ü статистика заболеваемости;
ü статистика деятельности учреждений здравоохранения.
Вместе описательная и аналитическая статистики решают следующую задачу:
ü сбор данных и описание их в удобном для статистической обработки виде;
ü обработка результатов методами теоретической (общей) статистики;
ü анализ полученных результатов, прогнозирование, выработка оптимальных решений.
2. ОСНОВНЫЕ ПОНЯТИЯ ОПИСАТЕЛЬНОЙ СТАТИСТИКИ
И ИХ ХАРАКТЕРИСТИКА.
К основным понятиям описательной статистики относятся:
ü статистическая совокупность (генеральная и выборочная);
ü объем совокупности;
ü статистический вариант;
ü статистический признак;
ü статистическая частота (абсолютная частота);
ü частость (относительная частота).
Статистическая совокупность
— это множество объектов, объединенных по какому-либо признаку для статистического изучения.
Виды совокупностей:
- Генеральная совокупность (конечная или бесконечная).
- Выборочная совокупность (выборка).
Генеральная совокупность
— это совокупность всех объектов выбранного для исследования статистического множества.
Конечная генеральная совокупность
— статистическая совокупность, в которой количество изучаемых объектов с данным признаком ограничено.
Пример: количество студентов в академии, жителей в городе, число измерений в опытах.
Бесконечная генеральная совокупность
— это статистическая совокупность, в которой число объектов равно бесконечности. Используется в теоретических расчетах как математическая абстракция.
Выборочная совокупность (выборка)
— это часть генеральной совокупности, взятая для статического изучения.
Объем совокупности
— это количество объектов, входящих в совокупность.
Объем генеральной совокупности обозначается символом N
, а выборочной — n
.
Статистический вариант
— это объект совокупности, отдельное наблюдение или измерение.
Варианты обозначаются латинскими буквами x, y, z c подстрочными индексами, указывающими номер варианты.
Пример: х 1
— объект или измерение номер один,
х 2
— объект или измерение номер два и т.д.
Вариант без указания номера называется обобщенный
вариант
и обозначается латинской буквой с подстрочным буквенным индексом, например, x i
.
Варианты (объекты) статистической совокупности характеризуются различными признаками, в том числе теми, на основе которых они объединены в совокупность.
Признак, который меняет свое значение от одного объекта к другому, называется варьирующим признаком
, а само явление называется вариация
.
Качественные признаки
— это признаки, не имеющие количественного выражения. Это неизмеряемые признаки.
Пример: цвет, вкус, запах.
Количественные признаки
— это измеряемые признаки, выражаемые определенным числом.
Пример: вес, длина, плотность, температура.
Дискретные количественные признаки
— это количественные признаки, которые выражаются целыми числами.
Пример: число студентов в группе, пассажиров в автобусе, лепестков на цветке.
Непрерывные количественные признаки
— это количественные признаки, которые выражаются как целыми, так и дробными числами.
Пример: вес арбуза 7 кг, вес дыни 1.7 кг.
Интервальный признак
— это количественный признак, числовое значение которого лежит в определенных границах, называемых интервалами.
Пример: при измерении роста студентов, можно выделить интервальные группы 160 — 169 см, 170 — 179 см, 180 — 190 см.
Частота встречаемости (абсолютная частота)
— число, показывающее, сколько раз объект с данным числовым значением признака встречается в совокупности или ее интервале.
Абсолютною частоту обозначают символом n i
(µ i).
Сумма всех абсолютных частот равна объему совокупности N, для которой подсчитываются частоты: ∑n i = N
Пример: число лиц мужского и женского пола в группе должно быть равно в сумме количеству студентов в этой группе.
Частость (относительная частота)
— число, равное отношению абсолютной частоты к объему совокупности.
Частость обозначают символом f
и вычисляют по формуле:
в долях единицы:
f i
=
,
в процентах: f i
= 100%
Здесь n i
— абсолютная частота, N
— объем совокупности, равный сумме всех абсолютных частот.
Сумма всех относительных частот равна 1: ∑f i
= 1
Пример: в студенческой группе из пятнадцати человек (объем совокупности N
=15) 12 студенток (абсолютная частота n
1
=12) и 3 студента (абсолютная частота n
2
=3). Частость f
1
будет равна 12/15, а частость f
2
=3/15. При этом сумма частостей или относительных частот равна единице.
В статистике относительные частоты или частости называют весами.
3. РЯДЫ РАСПРЕДЕЛЕНИЯ, ИХ ВИДЫ И СПОСОБЫ ПРЕДСТАВЛЕНИЯ.
Ряд распределения
— это последовательность чисел с указанием качественного или количественного значения признака и частоты его встречаемости.
Виды рядов распределения классифицируются по разным принципам.
По степени упорядоченности ряды делят на:
ü неупорядоченные
ü упорядоченные
Неупорядоченный ряд
— это такой ряд, в котором значения признака записаны в порядке поступления вариантов при исследовании.
Пример: При исследовании роста группы студентов были записаны его значения в см (175,170,168,173,179).
Упорядоченный ряд
— это ряд, полученный из неупорядоченного в котором значения признака перезаписаны в порядке возрастания или убывания. Упорядоченный ряд называется ранжированным, а процедура ранжирования
(упорядочивания) называется сортировкой.
Пример: (Рост 168,170,173,175,179)
По виду признака ряды распределения делятся на:
ü атрибутивные
ü вариационные.
Атрибутивный ряд
— это ряд, составленный на основе качественного признака.
Вариационный ряд
— это ряд, составленный на основе количественного признака.
Вариационные ряды подразделяются на дискретные, непрерывные и интервальные.
Вариационные дискретные, непрерывные и интегральные ряды названы по соответствующему признаку, который лежит в основе составления ряда. Например, ряд по размеру обуви является дискретным по массе тела — непрерывным.
Способы представления рядов в практической и научной медицине делятся на три группы:
- Табличное представление;
- Аналитическое представление (в виде формулы);
- Графическое представление.